在数学的广袤世界里,实数与虚数是两个极为重要的概念。你是否好奇实数、虚数是什么呢?实数其实是我们日常生活和数学学习中常见的数,包括有理数和无理数,像 1、-2、3.14、π等都属于实数,它们能直观地对应到数轴上的点,用于描述实际生活中的各种数量关系。而虚数则相对抽象一些,它是在求解方程时为了弥补实数的不足而引入的,以虚数单位 i 来表示,其中 i 的平方等于 -1。了解实数和虚数的本质,能为我们进一步探索数学的奥秘打下坚实基础。
1、实数(realnumber)是有理数和无理数的总称。实数定义为与数轴上的实数,点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。实数可以分为有理数和无理数两类,或代数数和超越数两类。实数集通常用黑正体字母R表示。R表示n维实数空间。实数是不可数的。实数是实数理论的核心研究对象。所有实数的集合则可称为实数系(realnumbersystem)或实数连续统。任何一个完备的阿基米德有序域均可称为实数系。在保序同构意义下它是惟一的,常用R表示。由于R是定义了算数运算的运算系统,故有实数系这个名称。
2、虚数。虚数是指实数以外的复数,其中实部为0的虚数称为纯虚数。在数学中,虚数就是形如a+b*i的数,其中a,b是实数,且b≠0,i2=-1。虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字。后来发现虚数a+b*i的实部a可对应平面上的横轴,虚部b与对应平面上的纵轴,这样虚数a+b*i可与平面内的点(a,b)对应。可以将虚数bi添加到实数a以形成形式a+bi的复数,其中实数a和b分别被称为复数的实部和虚部。一些作者使用术语纯虚数来表示所谓的虚数,虚数表示具有非零虚部的任何复数。
我对加盟感兴趣,马上免费通话或留言!
(24小时内获得企业的快速回复)
我们立即与您沟通
温馨提示:
1.此次通话将不会产生任何费用, 请放心使用
7x24小时电话咨询
130*1234567